На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
общая лексика
армирование против усадочных напряжений
строительное дело
арматура для восприятия усадочных напряжений
общая лексика
негативное подкрепление
медицина
отрицательное подкрепление
строительное дело
рабочая арматура, воспринимающая усилия от отрицательных изгибающих моментов (в зоне промежуточных опор)
общая лексика
арматурный
армирующий
упрочняющий
усиление
усиливающий
строительное дело
армирование (бетона)
усиление (конструкций)
арматура
[ri:in'fɔ:smənt]
общая лексика
подкрепление
усиление
арматура
армирование
армировка
укрепление
упрочнение
строительное дело
элемент жесткости
арматура (железобетона)
армирование (строительных конструкций)
существительное
общая лексика
усиление
укрепление
армирование
военное дело
подкрепление
пополнение
строительное дело
арматура
специальный термин
закрепление (условного рефлекса, навыка; особ. системой поощрений)
система поощрений (особ. подопытного животного)
медицина
подкрепляющий раздражитель
In statistics, shrinkage is the reduction in the effects of sampling variation. In regression analysis, a fitted relationship appears to perform less well on a new data set than on the data set used for fitting. In particular the value of the coefficient of determination 'shrinks'. This idea is complementary to overfitting and, separately, to the standard adjustment made in the coefficient of determination to compensate for the subjunctive effects of further sampling, like controlling for the potential of new explanatory terms improving the model by chance: that is, the adjustment formula itself provides "shrinkage." But the adjustment formula yields an artificial shrinkage.
A shrinkage estimator is an estimator that, either explicitly or implicitly, incorporates the effects of shrinkage. In loose terms this means that a naive or raw estimate is improved by combining it with other information. The term relates to the notion that the improved estimate is made closer to the value supplied by the 'other information' than the raw estimate. In this sense, shrinkage is used to regularize ill-posed inference problems.
Shrinkage is implicit in Bayesian inference and penalized likelihood inference, and explicit in James–Stein-type inference. In contrast, simple types of maximum-likelihood and least-squares estimation procedures do not include shrinkage effects, although they can be used within shrinkage estimation schemes.